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Cenex has a long history of involvement in UK V2G
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Project Summary: Exploring cost, carbon and conditioning

benefits behind the meter

Overall summary:

EV-elocity aims to demonstrate vehicle-to-grid in a range of real-
world situations to gain technical, customer and commercial insights
into this emerging technology

5 main aims:

1. Deploy a technology-agnostic backend system and user interface
to manage and operate V2G units

2. Demonstrate V2G across a range of UK locations, collecting data

on charger, user and vehicle behaviour

Discover more about the user behaviour and operation of V2G

4. Deepen understanding around the impacts of V2G on battery
degradation

5. Develop an evidence-based techno-economic model of the
viability and value of V2G within the UK
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Performance of lithium-ion batteries declines with use and time

TIME — “Calendar Aging” -
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Performance of lithium-ion batteries declines with use and time

USE — “Cyclic Aging”

* Battery degrades over time due to use Battery SOF vs, Time: Varying DEFE Use
(Exclusively vehicles operating in hot climates, Primary charge Level 2, High use)
* More extreme uses cause greater
degradation (i.e. harsh acceleration or 09 \_
rapid charging) ;fj
g 0.75
e Greater mileage causes greater i
degradation 06
0.55
0.5
» Specific behaviour will depend on the L e A
battery chemistry and a combination ——Never DCFC = DCFC0-3Times PerMonth  emmmDCFC >3 Times Per Morth

of usage factors


https://www.geotab.com/blog/ev-battery-health/

Prior work

Dubarry et al 2017, Hawaii: Uddin et al 2017, University of Warwick

e Results show that additional cycling to * If a daily drive cycle consumes between 21%
discharge vehicle batteries to the power grid, and 38% state of charge, then discharging
even at constant power, is detrimental to cell 40%—8% of the batteries state of charge to
performance. the grid can reduce capacity fade by

* This additional use of the battery packs could approximately 6% and power fade by 3%
shorten the lifetime for vehicle use to less over a three month period.

than five years.

Uddin and Dubarry 2018, Joint:
* The authors of these two major studies jointly reconcile their previous conclusions by providing

clarity on how methodologies to manage battery degradation can reliably extend battery life.
* Hawaii cycles are not realistic, cycling is unintelligent, results may be due to chemistry
* Warwick model is not applicable in real-life, is not dynamic and is based on simulation

* In other words: it depends...



Research approach

Objectives:

* Can EV batteries be pre-conditioned to minimize

degradation through Charging? Influential input parameters Semi-empirical models Model output
e Can the pre-conditioning strategies include options for Temperature
P
V16 and V2G use cases: SoC ' Calendar ageing model
ApproaCh Duration
e Degradation models developed to predict the lifetime . :
. L otalcap.aCfty
capacity loss of the battery fade prediction
Temperature —
e Semi-empirical approach selected due to fast and I
accurate capacity calculation e N -
| Cycling ageing model —
* Models trained and verified on historical aging datasets bob ]
Application Ah throughput —

* Apply benefit to V2G strategies



Training datasets used to create calendar aging model

Calendar ageing test matrix

Storing temperature (°C)

SoC (%)
0 25 45 60

0 3cells | 3 cells | 3cells | 3 cells
2 3cells | 3 cells | 3cells | 3 cells
5 3cells | 3cells | 3cells | 3 cells
10 3cells | 3 cells | 3cells | 3 cells
30 3 cells | 3 cells | 3 cells | 3 cells
50 3cells | 3cells | 3cells | 3 cells
60 3cells | 3 cells | 3cells | 3 cells
70 3cells | 3 cells | 3cells | 3 cells
80 3cells | 3cells | 3cells | 3 cells
85 3cells | 3 cells | 3cells | 3 cells
90 3cells | 3 cells | 3cells | 3 cells
95 3cells | 3cells | 3cells | 3 cells
100 3cells | 3 cells| 3cells | 3 cells

Reference test case

Discharge capacity [%]

Discharge capacity [%]
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Training dataset — calendar capacity loss

Capacity fade at 0c
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Testing dataset — calendar capacity loss

Calendar ageing test matrix

Duration [week]

. 0
Storing temperature ( C
15 35
20 3 cells | 3 cells | 3 cells
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Capacity fade at 1 5C
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Then the calendar aging model was tested

Capacity fade at 15°C

75%S0C : MAE=0.084 ; Accuracy=98.18%
20%SOC : MAE=0.238 ; Accuracy=90.89%

NS
T
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Capacity loss [%]
N
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Linear interpolation is used to predict
the calendar ageing at any specific
ageing condition (storing SoC,
temperature, duration).

Linear extrapolation is used to predict
the capacity loss beyond the tested data.
However, limitation of linear
extrapolation is the inaccuracy due to
more non-linear end of life region
associated with cell ageing.

The testing accuracy is varied within
90.89 ~ 98.18%



Then the cyclic ageing model was trained and tested

C-rates

T (°C) 0.3C Charge | 0.3CCharge | 0.3C Charge
0.3C Discharge| 1C Discharge | 2C Discharge

Cell capacity under cycle ageing @0.3C CHA 100%DoD, 10°C
T T T T

0 3 cells 3 cells 3 cells 100%- '
10 3 cells 3 cells 3 cells ,“ = i ?SEESH
95 -\ g ; — % 2CDCH |-
Cycling ageing dataset N e
(for training and testing) z Of ) = 1
Because of the lack of historical ageing data for  § st e
verifying of the cycling ageing model. (é’ ol |
: .
-> For model training and testing purposes, a ratio & | 1
of historical ageing data (in %) is examined to |
evaluate the modeling accuracy. T I
65 | : : : :
-> Polynomial curve fitting method used for testing ’ 0 P mberof Gyl ycles] 2900 2000

purposes.



Preconditioning

Gentle driving profile Intensive driving profile

* Mileages of each trip/day is about 20-40 miles * Mileages of each trip/day is about 50-90 miles
 Starting SoCs are between 60-80% e Starting SoCs are within 20-50%

5 Days Driving & Standard Charging Profile 5 Days Driving & Standard Charging Profile
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Strategy 1 — STA CHA

Charging Profile

mwng &S

Standard “dumb” charging

(%)

e Conventional “dumb” charging.

e EV battery is fully charged as soon as
it is connected to the charger, then
left at 100% SoC until departure

Battery current profile [A)
SOC vanation
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5 Days Driving & Standard Charging Profile

100
20 1
| a0
z ° !
@ | 80 ~—
g | -
o [=}
= I 70 &
40 £
: | §
2 .60 | {eo S
2 ! ”
@ 80 | 50
-100 !
| 40
I 3 |
1 1.5 1.6 1.7 1.8 19 3
|dI | 1 1 Timing [day] ﬁ l
1l I | I
Prev. trip! ! I | 1| Next trip
Unplug Drive | Fyjj charge Rest Unplug Next
Plugin drive



Strategy 2 — TS CHA

s\Qriving & Time-shift Charging Profile
et - ———

e Time-shifted Charging
E * Smart-charge method with delayed
= charging.

8
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3 35
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Strategy 3 —SC V1G

5 Days Driving & Smart Charging Profile
AL AU R L L

2" © Smart charge V1G
8 o e Smart charging without feeding back
g % into the grid.

BT s s e EV battery is left resting at SoC (or an

5 Days Driving & Smart Charging Profile
T T T T T T T

SoC with smaller calendar aging rate),
0 then charged at an appropriate time
to be 100% at departure
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Strategy 4 — SC V2@

5 péys Driying & Smart Charging V2G Profile
T T T

100

Smart charge V2G

- | R—

a * Smart bi-directional charging.
8 > * EV battery is discharged to the SoC
o s w s with lowest calendar aging rate, then
5 Days Driving & Smart Charging V2G Profile Charged at an approprlate tlme to be
il [ i i ] 100
E | . 100% at departure.
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Preconditioning Strategies

Standard Charging Conventional “dumb” charging.

Strategy EV battery is fully charged as soon as it is connected to the charger, then left at 100%

STA CHA SoC until departure

Time-shifted Charging Smart-charge method with delayed charging.

TS CHA EV battery is left at SoC and is charged at appropriate time to be 100% at departure.

Smart charge V1G Smart charging without feeding back into the grid.

SCV1G EV battery is left resting at SoC (or an SoC with smaller calendar aging rate), then
charged at an appropriate time to be 100% at departure

Smart charge V2G Smart bi-directional charging.

SCV2G EV battery is discharged to the SoC with lowest calendar aging rate, then charged at an

appropriate time to be 100% at departure.

Combined SCV1G +V2G A combination of SC V1G and SC V2G that considers the trade-off having extra cyclic
SC VxG aging to achieve optimal SoC vs reduction of calendar ageing at optimal SoC



Results

Gentle profile (higher starting SoC)

* All pre-conditioning strategies
improve battery life

e But V2G will degrade faster due to
increased charge throughput

e VXG improves battery life because
it balances aging modes

Intensive profile (lower starting SoC)

* All pre-conditioning strategies
improve battery life

* Time-shifted charging provides the

— most gain for least complexity
30DAYS 1000AY5 365D * As battery ages, increased

charging throughput to condition

the battery starts to degrade the

improvement

Comparison of mitigated battery degradation to baseline STD CHA
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-16
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Results have been published

* Thanks to the WMG University of
Warwick team, the results have been
peer-reviewed and published

» A Study of Reduced Battery
Degradation Through State-of-Charge
Pre-Conditioning for Vehicle-to-Grid
Operations

» Bui, Sheikh, Dinh, Gupta, Widanalage,
Marco

* |EEE Access, Volume 9

* https://ieeexplore.ieee.org/document/961
7644




Final Report

* Project Overview here:
https://www.cenex.co.uk/case-studies/ev-

elocity-case-study/

|

| H
it

* Final Report available here:
https://www.cenex.co.uk/app/uploads/202
2/06/EV-elocity-Final-
Report_published.pdf
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