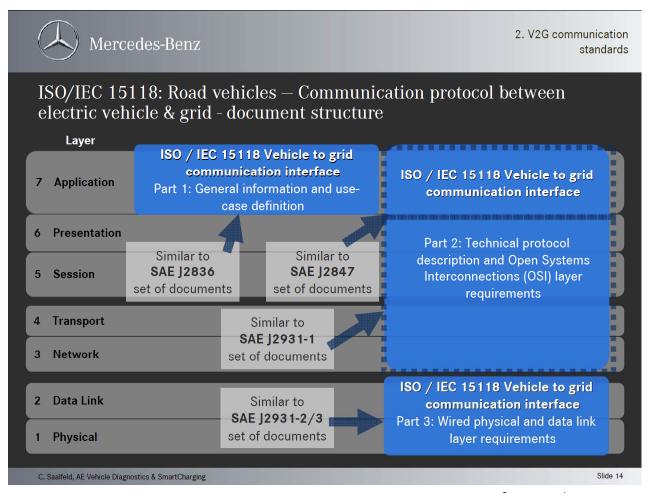


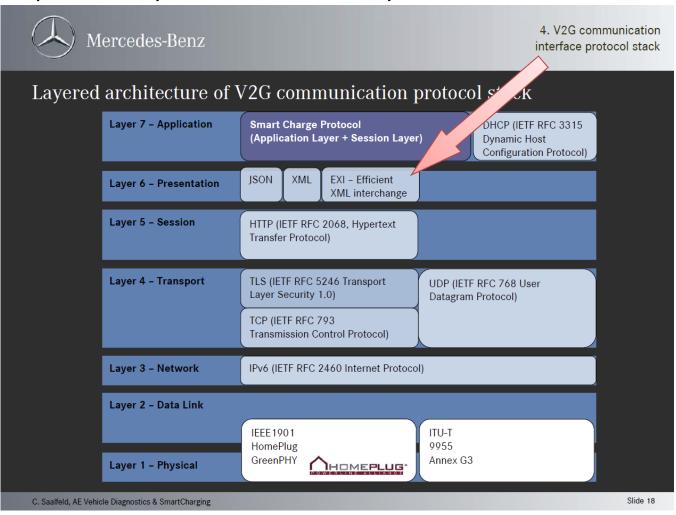
July, 11 2011 Fujitsu Ltd.



Background - ISO15118 -

EXI in Vehicle to Grid communication

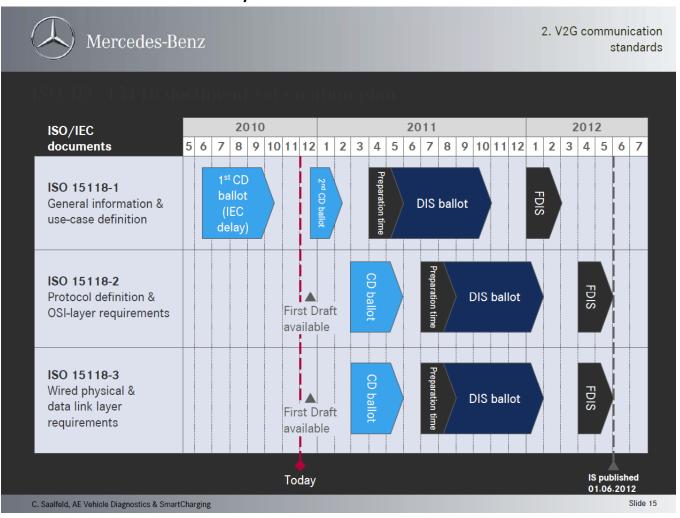
- ISO/IEC 15118 standard
 - Road Vehicles Vehicle to grid communication interface



Ref.: Daimler AG Vector-Kongress 2010

EXI in Vehicle to Grid communication

- ISO/IEC 15118
 - EXI is adopted for Layer 6: Presentation layer



Ref.: Daimler AG Vector-Kongress 2010

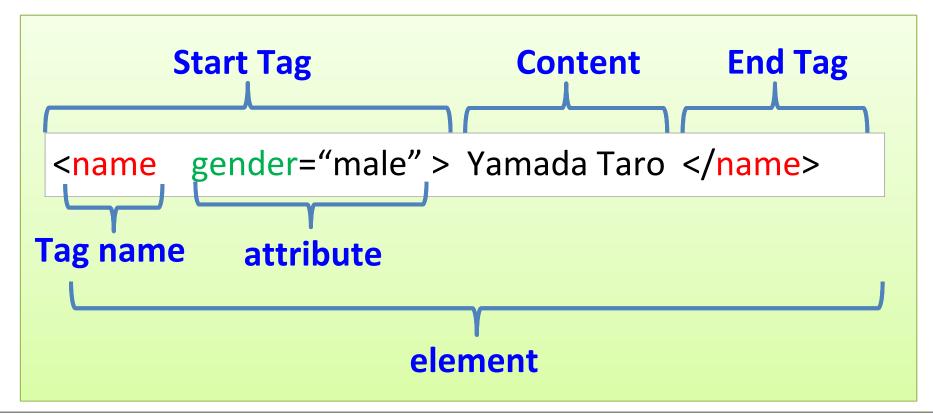
EXI in Vehicle to Grid communication

- ISO/IEC 15118
 - FDIS vote will be end of this year

Ref.: Daimler AG Vector-Kongress 2010

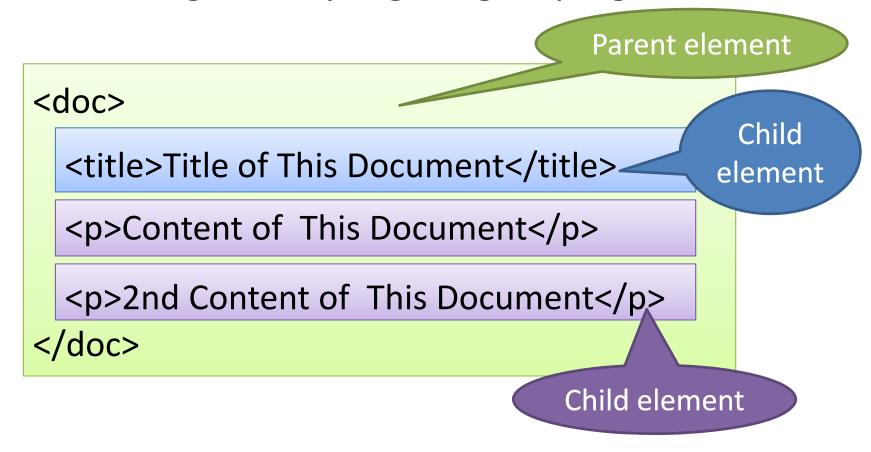
What is EXI (Efficient XML Interchange)?

What is EXI?

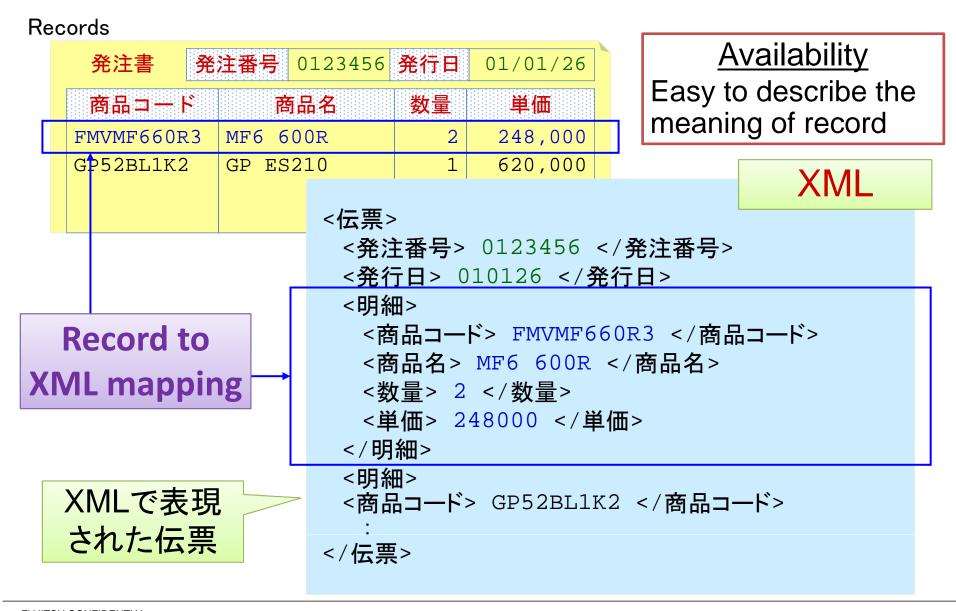


- Abbreviation of "<u>Efficient XML Interchange</u>"
- One of XML related technology. Developed for efficient XML Data exchange
- On of activity of W3C (World-Wide-Web Consortium)
 - EXI Working group is in charge for standard development
 - Became recommendation at March

What is XML?


- XML: eXtensible Markup Language
- One of data format. Tagging for formatting the data
- HTML is well known tagging format

XML: hierarchical structure



- Tag is used for giving the meaning of the data
- Surrounding data by tag for grouping the data

Sample of structured XML data

Advantage of XML(1): easy to understand

- Tagging is flexible mechanism for data formatting
 - ■Ex. CSV format: "1000", "Tanaka", "Jiro", "R&D div."
- How can we recognize "1000"? Is it number of items or employee number?
 - Ex. XML format:
 <EmployeeNumber>1000</EmployeeNumber>
- XML format is easy to understand by human. Also machine can identify which part of data is employee number

Ref:@IT article

Advantage of XML(2): easy to enhance

- If the data item is changed such as address field is added...
 - CSV: "1000", "Tanaka", "Jiro", "Minato-ku Toranomon 1-1-1", "R&D div."
- In the case of CSV format, all systems are affected by the change since the system recognize the data item by order of item. Then many system must be modified
- In case of XML format, it is easy to insert new field since the data is identified by its tag

```
<Employee>
<EmployeeNumber>1000</EmployeeNumber>
<EmployeeName>
<FamilyName>田中</FamilyName>
<GivenName>次郎</GivenName>
</EmployeeName>
</EmployeeName>
<Address>Minato-ku Toranomon 1-1-1</Address>
<Department>総務</Department>
</Employee>
```

Ref:@IT article

Issues of XML

File size

 XML is very flexible format but increases file size. XML file size is lager than proprietary data format twice to severalfold

Zip for data compression

- Zip is easy way for reduce the data size, but
- Inefficient for smaller file
- Compressing process requires match CPU cycles and memory(it is hard to small-footprint hardware)
- Decompressing process increases total processing time(decompressing time + XML processing time)

Aim of EXI

Design goal of EXI

- Smaller or similar size than hand assembled format
- Independence from original file size. EXI should valid for smaller file
- Processing performance is better or similar than XML + ZIP decompression and XML Parse
- 100% compatible with original XML

W3C EXI Working group

- **■** Member: 10 companies and organizations
 - AgileDelta, Canon, Siemens, Navy Collage, MITRE, University of Helsinki, Stanford University, China Electronics Standardization Institute, FUJITSU
- Chair: MITRE and FUJITSU
- Editor: AgileDelta and FUJITSU

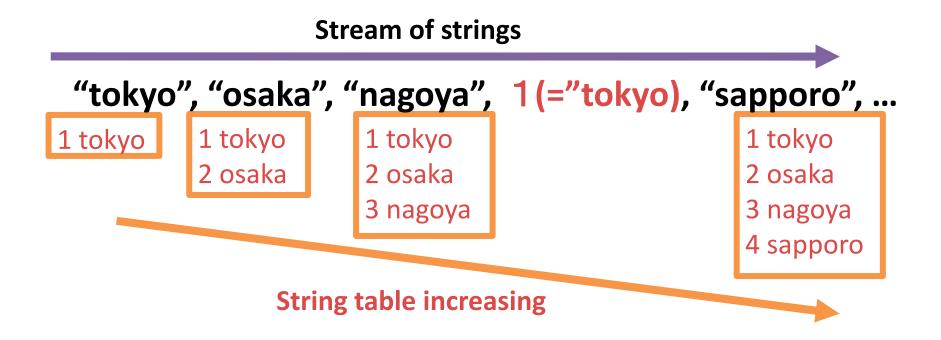
Compactness of EXI

	FPML	JTLM
XML	3815 bytes	937005 bytes
XML+GZIP	1292 bytes	113904 bytes
EXI	345 bytes	7885 bytes
XML+GZIP / EXI	3.7	14.4

■ FPML: Financial Product Markup Language (financial area)

■ JTML: Joint Theater Logistics Management (military affair)

Processing performance


- XML+GZIP is NOT efficient for high speed network
- EXI is efficient for any bandwidth

	11 mbps	54 mbps	High speed LAN (loopback)
EXI	6660 TPS	15448 TPS	84711 TPS
XML	1060 TPS	3722 TPS	5055 TPS
XML+GZIP	1680 TPS	3559 TPS	3963 TPS
EXI/XML+GZIP	4.0	4.2	16.8

How to compress (1) String table

Assign ID for strings

How to compress (2) prediction by Schema

- Use XML Schema as template of structure
- Omit the information which defined in XML Schema

Template(defined by XML Schema)

<A>StringString<C>String</C>

List of strings("tokyo", "osaka", "nagoya") is enough for the structure

<A>tokyoosaka<C>nagoya</C>

How to compress (3) XML specific compression unitsu

- Similar values are stored in same value list
- Compressing value list for high performance and better compression
- Values in same tag are stored in same value list
- As result;
 - High processing performance
 - Read: Nine times faster than XML+ZIP on average
 - Write: Six times faster than XML+ZIP on average
 - More compact than XML+ZIP for any original file size

Available resources

EXI Processor

- OpenEXI (Open source project in Apache license)
- EXIficient (Freeware in GPL license)
- AgileDelta Efficient XML (Product)

Performance data (Reference documents)

■ EXI Evaluation (W3C Note) http://www.w3.org/TR/exi-evaluation/

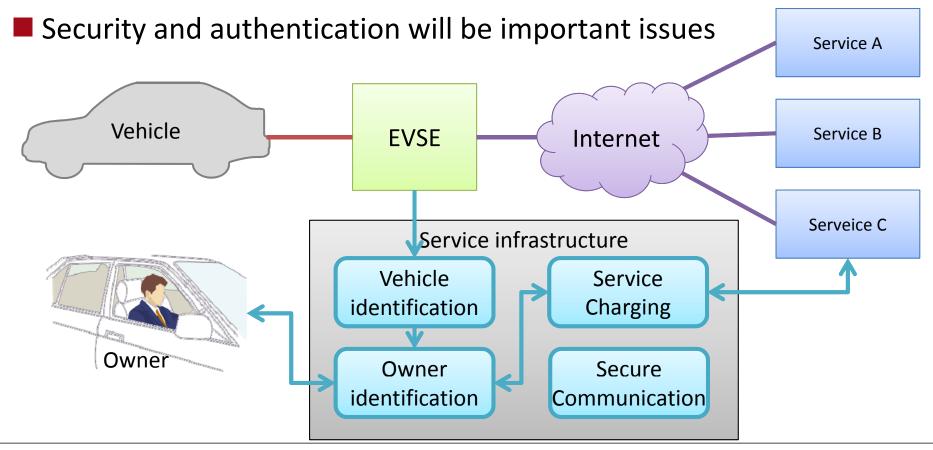
Plan of EXI

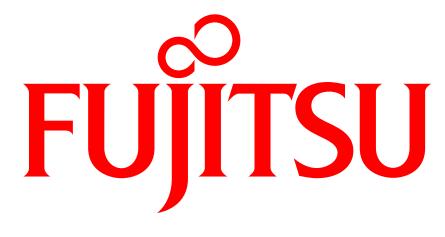
- Implementation of processor
- 2011: Open source implementation by Java
 - Recognition and diffuse of EXI
- 2012: Implementation in C++
 - Embedding purpose
 - High performance
- 2013: Implementation in C
 - For smaller device such as sensor
 - For small footprint Web browser

EXI for V2G

Use case: OpenV2G

OpenV2G


- Open source activity leaded by Siemens
 - Siemens is member of W3C EXI WG
 - Siemens is enthusiastic about signature for EXI
- The objective to start this project is primarily to support the ISO and IEC standardisation process
- Specifications
 - ISO TC22/SC 3, W3C EXI, EXIficient, Smart Energy Profile 2.0
- Latest version is 0.7 Release
- focusing on the applicability of the openV2G library to the embedded domain in terms of processing speed and code footprint
 - the EXI codec alone is at 26 kB (compiled with gcc),
 - the complete V2G service implementation for a PEV application results in 46 kB, and
 - the complete V2G servie implementation for an EVSE application results in 42 kB.


http://openv2g.sourceforge.net/

Connection to Open network

- ISO15118 is using specifications which are common in internet
 - IPv6, HTTP, XML, EXI, etc.
- Then it is easy to connect EV Internet via EVSE EV. EV may use the services on Internet

shaping tomorrow with you