

急速充電器用コネクタSWGの活動

2012年 5月 22日 CH/\deMO協議会 コネクタSWG

1. コネクタSWG

活動状況:2011年7月20日開始~

現在までに11回の検討会を実施

4 to 7 7 7 7 7 7	コネ	トクタ	インレット				
参加コネクタメーカー	市販化	設計/製造	市販化	設計/製造			
アイティティキャノン				0			
住友電気工業	0			0			
タイコエレクトロニクスシ゛ャハ°ソ合同会社							
大電	0						
日本航空電子工業	0						
パーツサプライセンター							
日立電線				0			
フエニックス・コンタクト							
フジクラ	0						
古河電気工業		0		0			
矢崎総業	0		0				
U'eyes Design							
ワゴジャパン							

3. 性能互換

試験項目:安全に充電できる為に~

満足すべき性能基準の設定

⇒ 継続検討中

					•		"		יעוי	U 1/																	
討	談項 目	ョの例		1. 4 於性i			4.	2 . 1	電気	表色为	寺性							4.	2.	2 概	柯特	姓					
			4. 1. 4. 1	4. 1. 4. 2	4. 1. 4. 3	4. 2. 1.	4. 2. 1. 2	4. 2. 1. 3	4. 2. 1. 4	4. 2. 1. 5	4. 2. 1. 6	4. 2. 1. 7	4. Qi Qi 1	4.ପ ପ ପ	4 ପ ପ ଓ	4. 2. 2. 4	4. 2. 2. 5	4. 2. 2. 5	4. 2. 2. 7	4. 2. 2. 8	4 2 2 0 0	4. 2. 2. 10	4. 2. 2. 11	4. 2. 2. 12	4. 2. 2. 13	4. 2. 14	4. 2. 2. 1.
			外観	端子表面調査	分解調査	温度上昇	電圧降下	絶縁抵抗	耐電圧試験	漏洩電流	接地回路電流試験	ヒューズマッチング特性	コネクタ挿入力	コネクタ離脱力	こじり破壊強度	ケーブル引っ張り強度	ロック破壊強度	ロック解除力	インレットキャップ解除力	インレットキャップ開閉時間	インレットキャップ閉力	強度	端子圧筹部強度	端子保持力	ねじ部破壊強度	コネクタ逆挿入	
	初		X			Х	Х		-		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х)
	4. 2. 3. 1	落丁衝擊試験	- . <u>X</u> .	 -	∤ <i>×</i> .	· 	 	ŀ∴.	<u>. ×</u> .	∤ -	∤	 	ļ	ļ	ļ	<u></u>	 -	 -	 	 -		{	 -	∤	ļ	} [/]	ļ
	4.2.3.2	工具落下衝擊	X	{ -	ļ. <u>ķ</u> .		}	. <u>×</u> .	ŀ. <u>×</u> .	├ -	├ -	 -			 		 -	 -	}	}	}	╂	╂	 -	├ -	{ []]	 -
	4. 2. 3. 3 4. 2. 3. 4	クラッシュ試験 ビークルドライブ オーバー試験	1.X. X	 	×.	· 		×	×						l		ļ	 -		 	 	ļ					}
機械的 耐久性	内4.2.3.5 生4.2.3.6	緑石衝撃試験 共振点調査	×																								
	4, 2, 3, 7	共振点加振試験	X X X	<u> </u>	<u> </u>	X.	<u>.x.</u>	X X	L×.	<u> </u>	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 .	<u>L</u>	<u>L</u>	<u> </u>	L	<u> </u>	<u>. </u>
	4, 2, 3, 8	ランダム振動試験 泥塩水挿抜試験	X	ļ	ļ	X.	X. X	X	×								ļ	ļ	ļ	ļ	_	ļ				ļ [¬]	
		泥塩水挿抜試験		ļ.×.	 	<u> X</u>	J.X.	Į. <u>X</u> .	J.X.	ļ	. .	ļ	X.	<u>X</u>	 		 	 	ļ	ļ	ļ		ļ	ļ		[]	
	4. 2. 3. 10 4. 2. 3. 11	キャップ制閉耐久 10回こじり挿抜試験	X X	×		х	х		х																		
	10 0 A 4	世たった生学体会	$T\nabla$					$\overline{}$	$\overline{\mathbf{v}}$	$\overline{}$																	٦.

4. メンテナンス

点検項目:トラブルを未然に防ぐ為に~

コネクタの点検部位・方法を提案

⇒ CHAdeMO HPに掲載予定

急速充電ケーブル 点検内容叩き台

No.	点検項目			点検要項	対象.	異常があった場合に懸念される事象				
MO.	从快快日	日常	定期	判断基準	メーカー	大きかのフルカロ 下部のこれの予察				
1	コネクタ外観	0	0	・目視で確認できる変形、亀裂、破損等がないこと	ALL.	・破損部位による怪我・絶縁体破長によるアークの発生、感電				
2	コネクタ接合面	0	0	-コネクタ接合面に水液や異物の付着がないこと	ALL	·異物の付着による端子接点の抵抗上昇 → 温度上昇 ・異物によるかん合力の上昇/かん合不可				
3	ハウジングのシール面	0	0	・目視で確認できる変形、亀裂、破損、キズ等がないこと	ALL	・水の浸入によるショート、感電など				
			0	・端子表面に母材の露出がないこと	ALL	·端子接点の抵抗上昇 → 温度上昇				
4	パワー端子	0	0	・目視で確認できる変形、キズ等がないこと	ALL	・端子の接触不良による抵抗上昇 → 温度上昇 ・コネクタかん合力の上昇/かん合不可				
5	パワー端子部樹脂キャップ	0	0	・樹脂キャップの外れがないこと	ALL	・ 端子への触手による感電				
			0	・端子表面に母材の露出がないこと	ALL	・端子接点の抵抗上昇 → 充電不可				
6	信号端子	0	0	・目視で確認できる変形、キズ等がないこと	ALL	・端子の接触不良による抵抗上昇 → 充電不可・コネクタかん合力の上昇/かん合不可				
7	信号端子キャビティ内の十字壁	0	0	・目視で確認できる変形、破損等がないこと	ALL	・信号端子の保護不足 → 信号端子の変形				
8	ラッチ	0	0	目視で確認できる変形、破損等がないこと手で押したとき、ラッチが正常に動くこと	ALL	·インレットへの係止不全 → かん合外れによるアーク発生				
9	ケーブル	0	0	・シース表面の磨耗、亀裂などにより内部介在や 絶縁層が露出していないこと	ALL	・鋼体の露出によるショート、感電				
10	電磁ロック		0	・通電時にロックがかかること	ALL	・かん合外れによるアーク発生				
11	ムービングプレート		0	・目視で確認できる変形、破損等がないこと・プレートを押したときにスムーズに動くこと	矢崎 フジクラ	・端子への触手による感電 ・コネクタかん合力の上昇				
12	メインレバー	0	0	・目視で確認できる変形、亀裂、破損等がないこと・レバーを握った際、スムーズに動くこと・リリースレバーを押した際、レバーが元に戻ること	矢崎	・コネクタの中途かん合 → かん合外れによるアーク発生・コネクタかん合力の上昇				
13	リリースレバー	0	0	・目視で確認できる変形、亀裂、破損等がないこと・レバーを押した際、ラッチが連動して正常に動くこと・レバーを離した際、ラッチとレバーが元に戻ること	矢崎	-コネクタ引き抜き不可				
14	レバー	0	0	・目視で確認できる変形、亀裂、破損等がないこと・レバーを押込んだ際、ラッチが連動して正常に動くこと・レバーを引き戻した際、ラッチが元に戻ること	フジ゚クラ	・コネクタ引き抜き不可 ・通信エラーによる充電開始せず				
15	5									

日常点検・・・設備責任者・管理者(例:ガソリンスタンドの場合・・・店長) 定期点検・・・充電器販売元(充電器メーカー)

1~10 :

:全社共通の項目 :各社独自の項目

次世代 CHAdeMO 充電コネクタ

操作性 Intuitive Design

簡単操作!Easy operation!

- ・挿し込むだけでかん合完了。
- Just insert to mate.
- ・外す時はイジェクターボタンを押すだけ。
- Push Eject button to unmate.

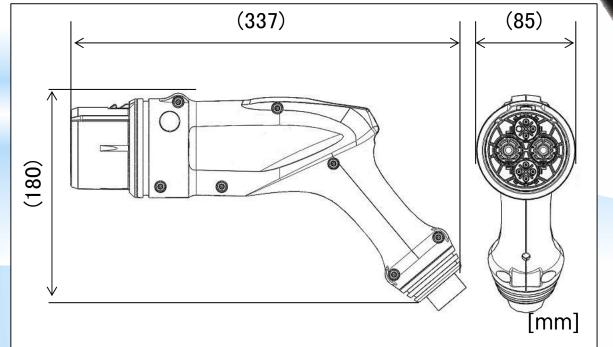
操作性 Ergonomic

取り回し易さを実現! Achieved Easy Handling!

- ・ユーザビリティを追求したグリップ形状。
- Grip Shape with Usability.
- ・高柔軟キャブタイヤケーブル。
- High-Flexible Cabtyre cable.

安全性 Safe

ラッチ位置の検知でより安全に。(CHAdeMO1.0準拠) Safer to detect latch position. (CHAdeMO 1.0 compliant)


耐久性 Durable

10,000回の挿抜耐久性能。

10,000 mating cycle performance.

経済性 Low cost

部品点数を減らし、低価格を実現。 Low price by component reduction.

Copyright (C) 2012 Yazaki Corporation. All Rights Reserved.

グローバル対応 For the global market

日本、米国、カナダ、欧州、ロシア向けに同時立上。

The new charge connector will be released for the global market at the same time.

仕向地 Market	取得認証(予) Certification _(plan)	定格電流 Current Rating	定格電圧 Voltage Rating
日本(Japan)	_	125A	500V
米国(U.S.)	UL	125A	500V
カナダ(Canada)	cUL	125A	500V
欧州(Europe)	CE	125A	500V
ロシア(Russia)	GOST-R	125A	500V

発売時期 Release Timing

2013年3月に工場出荷開始予定。

Factory shipment will start in March 2013.

Copyright (C) 2012 Yazaki Corporation. All Rights Reserved.

* The information in this document is subject to change.

EV急速充電用コネクタ付きケーブル(SEVD-01)

Human-Centered Design

特 徴 Features

- コネクタ本体(ガン部) Main body (gun)
 - 1. 優れた操作性(ユーザビリティ) Superior usability
 - ・軽量で取り回しやすく片手操作が可能 ・Single-handed operation
 - ・押し込むだけで勘合する簡単操作 ・Easy use, just plug in
 - 2. 親しみやすいデザイン(フレンドリー) User-friendly
 - 3. 安心設計(セーフティ) Reassuring safety design
 - ・通電時にコネクタがレセプタから外れない三重安全機構
 - · Automated triple safety lock system is achieved for safety purposes

■ ケーブル部 Cable 優れた柔軟性、耐久性

- ・屈曲、捻回、張力、しごきを繰り返し受ける事を想定し、 ケーブル被覆材に「ゴム材料」を使用
- 1) Durably designed flexible cable construction
- 2) Rubber material is applied to outer sheath (for flexibility).
- ·使用温度:-40~80℃
- ·Operating temperature : -40°C ~ 80°C

EV急速充電用コネクタ付きケーブル(SEVD-01)

操作方法 Manner of operation

●車両側充電口への接続方法

- Instructions for connecting to EV
- ①リリースボタン部「赤マーク」で、コネクタを前方に押し込む
- ①Just plug in (release button should show "red mark")
- ②「OKマーク」が現れ、接続完了
- 2Release button changes to "OK mark", meaning mating is completed.

●取り外し方法

- Disconnecting
- ①LEDランプ消灯(充電完了)を確認
- ①Confirming the LED lamp is off.
- ②リリースボタンを前方に押して、コネクタ本体を引き抜く
- Then push the release button and draw out.

什 様 Specifications

「コネクタ部] [Main body]

- コネクタ部のみの質量:約1kg
- ·Weight: approx. 1 kg (without cable)
- ・材質:本体-アルミダイキャスト
- · Material: die-cast aluminum

グリップー樹脂 Grip - resin

リリースボタンー樹脂 Release button - resin [ケーブル部] [Cable]

- ·設計外径:約31mm ·Diameter: approx. 31 mm
- ·質量:約1.6kg/m
- ·Weight: approx. 1.6 kg/m
- · 導体サイズ
- ·Conductor size

通電用:40mm²銅より線

Power: 40 mm² copper stranded cable

通信用: 0.75mm2

Signal: 0.75 mm² copper stranded cable

2

大電株式会社 DYDEN CORPORATION

http://www.dydn.co.jp

Quick Charger Connector for EV "KW1 Series "EV用急速充電コネクタ「KW1シリーズ」

●Lightweight connector 軽量コネクタ

Weight:about 1kg(connector only) 重量:約1kg(コネクタ本体のみ)

●Flexible Cable 軽量・高柔軟ケーブル

Use of a light and flexible cable makes operating the charger even easier.

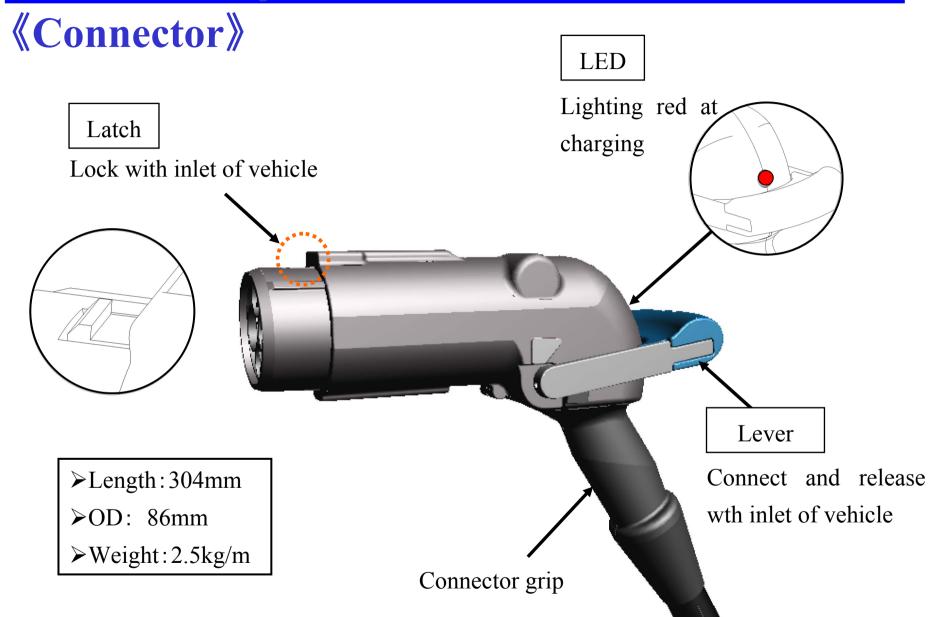
軽量・高柔軟ケーブルにより取り扱いを容易に。

●Better Maintainability 緊急対応

An emergency cover enables maintenance on-site if necessary.

緊急時にサイドのカバーを取り外し可能。

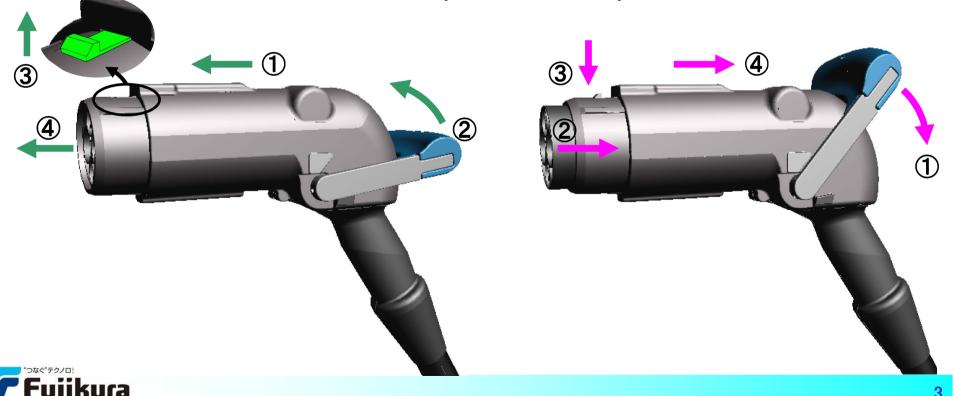
● Detection of connector latching ラッチ検出


Check that connector locking latch works mechanically. ラッチの動作を検出

CHAdeMO Cable assembly for EV Quick Charger

22th May 2012 3rd CHAdeMO General Assembly Fujikura Ltd.

Feature of Fujikura Connector


Feature of Fujikura Connector

《Connector》

Safety and Simple action!

- Very simple operation by using One Lever
- The connector and the vehicle inlet are tightly locked

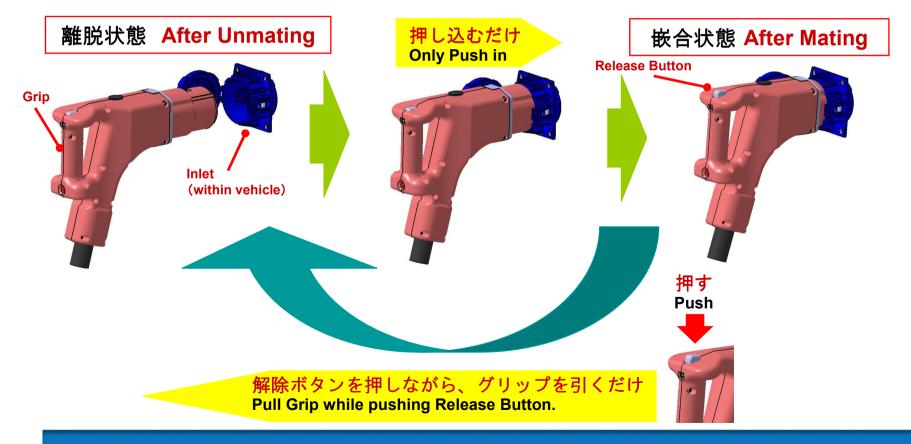
Low insertion force, easy to use for everyone

急速充電コネクタ (倍力 プッシュオン 接続方式)

EV Quick Charge Connector (Leverage mechanism Push-On Connect System)

FURUKAWA ELECTRIC

特長 Feature


① 操作が解り易い: 嵌合時はグリップをそのまま押し込み、離脱時は解除ボタンを押しながらグリップを引く。複雑なレバー操作は必要ありません!

Easy operability: (Mate) Only Push in

(Unmate) Pull Grip while pushing Release Button.

② 低挿入力: 倍力機構を内蔵し、挿入力は80N以下。

Low Insertion Force: Built-in Leverage mechanism / Insertion force is MAX 80N

